Search results

1 – 2 of 2
Article
Publication date: 29 July 2019

Zohreh Heydari, Gholamreza Shobeyri and Seyed Hossein Ghoreishi Najafabadi

This paper aims to examine the accuracy of several higher-order incompressible smoothed particle hydrodynamics (ISPH) Laplacian models and compared with the classic model (Shao…

Abstract

Purpose

This paper aims to examine the accuracy of several higher-order incompressible smoothed particle hydrodynamics (ISPH) Laplacian models and compared with the classic model (Shao and Lo, 2003).

Design/methodology/approach

The numerical errors in solving two-dimensional elliptic partial differential equations using the Laplacian models are investigated for regular and highly irregular node distributions over a unit square computational domain.

Findings

The numerical results show that one of the Laplacian models, which is newly developed by one of the authors (Shobeyri, 2019) can get the smallest errors for various used node distributions.

Originality/value

The newly proposed model is formulated by the hybrid of the standard ISPH Laplacian model combined with Taylor expansion and moving least squares method. The superiority of the proposed model is significant when multi-resolution irregular node distributions commonly seen in adaptive refinement strategies used to save computational cost are applied.

Details

Engineering Computations, vol. 37 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 June 2019

Mohsen Hadadian Nejad Yousefi, Seyed Hossein Ghoreishi Najafabadi and Emran Tohidi

The purpose of this paper is to develop an efficient and reliable spectral integral equation method for solving two-dimensional unsteady advection-diffusion equations.

Abstract

Purpose

The purpose of this paper is to develop an efficient and reliable spectral integral equation method for solving two-dimensional unsteady advection-diffusion equations.

Design/methodology/approach

In this study, the considered two-dimensional unsteady advection-diffusion equations are transformed into the equivalent partial integro-differential equations via integrating from the considered unsteady advection-diffusion equation. After this stage, by using Chebyshev polynomials of the first kind and the operational matrix of integration, the integral equation would be transformed into the system of linear algebraic equations. Robustness and efficiency of the proposed method were illustrated by six numerical simulations experimentally. The numerical results confirm that the method is efficient, highly accurate, fast and stable for solving two-dimensional unsteady advection-diffusion equations.

Findings

The proposed method can solve the equations with discontinuity near the boundaries, the advection-dominated equations and the equations in irregular domains. One of the numerical test problems designed specially to evaluate the performance of the proposed method for discontinuity near boundaries.

Originality/value

This study extends the intention of one dimensional Chebyshev approximate approaches (Yuksel and Sezer, 2013; Yuksel et al., 2015) for two-dimensional unsteady advection-diffusion problems and the basic intention of our suggested method is quite different from the approaches for hyperbolic problems (Bulbul and Sezer, 2011).

1 – 2 of 2